朗文科技(http://www.lwan.com.cn)
 
 
公司简介 公司业务 产品展示 技术支持 联系我们
电子学习资料[适合初学者]
本节介绍示波器的使用方法。
本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。
2.1 荧光屏
荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。
2.2 示波管和电源系统
1.电源(Power)
示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。
2.辉度(Intensity)
旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。
3.聚焦(Focus)
聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
4.标尺亮度(Illuminance)
此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。
2.3 垂直偏转因数和水平偏转因数
1.垂直偏转因数选择(VOLTS/DIV)和微调
在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0. 2V/DIV。 做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被 测信号的电压值。
2.时基选择(TIME/DIV)和微调
时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μS。
TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。 示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。 示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。
2.4 输入通道和输入耦合选择
1.输入通道选择
输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
2.输入耦合方式
输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值.
水清洗工艺中的水处理方案

水清洗工艺在业务增长速度最快的合约制造中经常见到,并在高可靠性电子产品制造中得到普遍认可。水清洗工艺的一个重要问题是水的处理,如从哪里获得需要的水、如何净化、清洗完的废水排放到何处以及如何使整个过程符合环保的要求等等。本文将讨论水洗工艺中的水处理方案,介绍如何才能节省成本并且更加符合环保的原则。
虽然免清洗工艺技术在不断前进并得到了广泛应用,但从九十年代中期以来我们却看到水清洗工艺的下降趋势在一定程度上已有所逆转。值得庆幸的是,目前关于水处理的最大的问题是缺乏足够的工艺知识,而不是缺少技术或设备。下面我们先对水清洗工艺及水处理技术的基本情况作一简要介绍,虽然主要是在线式线路板清洗,但其中很多内容一样可用于离线式清洗或其他工艺。
水清洗工艺概况
在讨论水处理方法之前,我们先把水清洗分为两大类:
1.只使用水而没有任何化学添加物的直接水洗工艺
2.在水中添加皂化剂、清洁剂或其他添加物的改进型水洗工艺
直接水洗工艺对有机酸及水溶性助焊剂的清洗非常理想,水(特别是去离子水)是一种颇具威力的极化溶剂,能够清除焊接后留下的酸性残留物等极化污染物,可是单独靠水却无法清除非极化污染物,如松香型焊剂中的粘性树脂。如果不在水中添加非极化成分,那么有害的酸和微粒可能会被树脂覆盖而无法清除,最终使电路板的电气性能下降。因此,甚至免清洗助焊剂有时也需要清洗。
添加剂中最常用的是皂化剂,它是一种碱性清洁剂,内含能溶解树脂的表面活化剂,可将树脂溶化使其被水冲洗掉。有添加物的水洗工艺比直接水洗工艺复杂得多,水处理技术也相应要复杂。
◆直接水洗工艺 这种工艺使用的在线式水洗机一般由预清洗区、带水槽的循环冲洗区、带水槽的循环漂洗区、终洗区以及烘干区组成。清洗过程中最干净的水从终洗区进入,再依次流到前面几个区域,最后从预清洗区的排水管排出;而待清洗的电路板则由预清洗区开始,逐渐往水越来越干净的区域移动,最后到达烘干区。理想情况下,终洗区的水是非常纯净的,具有低导电和高阻抗等特性,使得烘干过程中留在电路板上的残留物相对于板子清洁度的要求来说,其离子特性完全可以忽略。
水洗机的进水量一般是每分钟3到5加仑,水温在60℃左右。进入的水需要经过预热,以使水洗机在清洗过程中保持温度稳定,并使烘干过程更为顺利。
入水通常要经过碳离子交换处理,达到满足电路板清洁度的去离子(DI)纯度。另外,进入水洗机的水还必须要流出,所以一个开环的水洗系统每分钟会排出3到5加仑的水。在确定这种工艺的成本时,一般应考虑的因素有:
·自来水入水质量
·水费及排污费
·加热成本(电或燃气)
·DI水槽的更新频率与费用
虽然不同厂家算出的成本各不相同,但以每年运行2,000小时计,一个具有活性炭粒(GAC)、阴离子、阳离子和混合底层的开环式DI系统其年费用在35,000到40,000美元之间。采用水处理技术后可以使工艺效率更高并且更加环保,这部分具体内容包括:
·通过使用热交换系统进行热能回收
·入水(不管有无预处理)完全循环利用
讨论是否应该从排水口的废水中进行热能回收几乎是多余的,因为把热水直接排走就等于把钱往下水道里扔。热回收系统使水洗机出口的热水通过一个热交换器,从而回收大量热能。在开环式系统中,这些能量可以用来加热新的入水,而在循环系统中则可用来加热回到预清洗区的水。投入到热回收系统的资金在较短的时间内就能得到良好的经济回报。
在直接水洗系统中使用完全再循环可将用水量降低十倍,而不会每分钟都有3到5加仑水的浪费,所需要的水仅仅用于补充蒸发、排气和干掉的损失。这种系统有多种构造,但大多数都包括一个带储水槽的循环系统、再循环泵及其控制系统、水槽系统和加热器。
将水洗机主排水管排出的水回流到循环系统既可以依靠重力作用也可使用传送装置完成,由中央控制器提供压力,让这些水通过水槽、加热器而回到最后的漂洗区。先进的水槽装置能将重金属如铅、铜等分离出来并把它们集中在一起,以待专门的废物处理人员对其进行处理。
去离子的过程是在水通过GAC、阴离子和阳离子槽时进行的,普通系统得到的阻抗值一般能达到1到3MΩ。如果再加一个混合离子槽(阴离子和阳离子同在一个槽内)还可以进一步去除水中的离子,最高能达到18.2MΩ的DI纯度。
当水槽的去离子能力降到设定值以下时,就必须要对其更新,它主要受工艺中焊剂和污染物的数量以及补充入水质量的影响。
在很多情况下,进入的自来水中溶有很多固体物质,这加大了水槽的负担,会增加更新的频率和费用。为解决这个问题,补充入水可以用一个单独型强制水流通过渗透膜的逆渗透(RO)系统过滤提纯。水流分离后,部分水通过渗透膜,而另一部分则用于保持膜的清洁。
这样产生的水一般阻抗在25,000到500,000Ω/cm之间,比自来水的2,000到3,000Ω/cm好了很多;而剩余的废水也可直接排出,因为过程中没有增加任何致污物。当然也有其他节约成本的方法,但当自来水的质量较差时,在循环系统中增加逆渗透系统还是有用的。
◆改进型水洗工艺 在改进型水洗工艺中,无论是机器还是水处理技术其复杂度都有所增加,因为皂化剂或其他任何一种化学添加剂都非常昂贵,所以这些化学材料必须循环使用,把排水口关闭而将水流重新引到清洗槽中。因此,预清洗和清洗结合起来成为了一个较大的清洗区。除了成本因素外,皂化剂还含有较高的离子成分,所以绝不能残留在电路板上,同时它对水槽的寿命也有很大影响。
不同的设备制造商采用不同的技术使皂化剂残留最少,不过较为有效的一种方法是在清洗区与循环漂洗区之间增加一个中间漂洗区,有时候它也被称为化学材料分离区,该技术将皂化剂从板上冲洗掉,然后再用风刀将它刮掉。这种清洗机不像直接水洗工艺一样只有一个出水口,而是有三个,分别设在:
·清洗槽:当清洗槽放水时使用
·中间漂洗区:持续排水,约每分钟1加仑
·漂洗区:持续排水,约每分钟3到5加仑
从效果上看,漂洗水流如同直接水洗工艺一样,可用传统方式再循环利用。中间漂洗区的水流会残留一些皂化剂,并可能含铅。在一些城市里,这部分水流的污染程度低于规定值,可以排放到下水道;但在一些规定比较严格的地方,中间漂洗区和清洗区排出的水在排出前必须经过中间处理去除重金属,一些地方甚至还对水的pH值有要求,需要通过蒸发处理才能符合规定。选择水处理系统时,必须要充分了解当地的法规制度。
在皂化水洗工艺中,对入水进行逆渗透预处理同样也存在争论,由于要向漂洗区及中间漂洗区连续供应纯水,所以使用逆渗透的好处要大一些。
◆特殊应用 对一个使用两个或多个清洗机的生产场合,在热能回收、水循环利用及使用逆渗透循环利用方面可能节约的成本更多。现在已有大容量系统用一个中央控制系统支持四台清洗机,也有系统能在模板清洗过程中帮助去除铅,以符合法规的要求。
成功的关键
和任何生产应用一样,工艺监控、设备维护和基本常识同样也是循环系统成功的关键。这类系统经常遇到的问题是树脂更新的时间间隔长度,它取决于几个因素,包括工艺的用水量(与运行时间直接相关)、入水质量(可使用逆渗透预处理改善)以及工艺中污染物的数量和类型。
实际上任何带离子的物质都会增加树脂底层的负担,同样,有机物质也会阻塞活性炭粒槽,另外水溶性胶带和掩膜的使用也常常有一些问题。应该咨询这些材料的制造商,以便知道它们对碳离子交换过程的影响。
我们发现水槽寿命缩短通常是因为生产时间或电路板数量增加,用水越多以及处理的污染物越多,水槽就需要越快更新。清洗机的工作时间及线路板产量应记录并保存下来,以确定水处理的基本操作规程。
成功应用的另一个关键是要按照设备制造商的指导进行安全正常操作,这一点对重金属分离槽特别重要,这些槽必须按所建议的时间间隔由专门的废物处理人员将其从线上取下进行处理,否则会使铅漏到下一个槽中。
本文结论
应用文中讨论的技术有很多好处,如:
·降低用水量、热能消耗以及排污费,从而减少成本;
·提高清洗工艺的一致性;
·有助于环保;
·由于重视环保而提高公司声誉;
在模板清洗过程中没有铅泄漏,提高了操作人员的安全性。
只要对水处理技术充分了解,并建立强大的工程设备力量,这些优点就完全可以变为现实。

无铅焊接中的材料与工艺问题

无铅焊接中的材料与工艺问题
目前很多国家都在积极立法限制铅的使用以保护环境,这也推动了无铅电子组装的应用。但各种新型合金的整合性和可靠性问题现在仍没有彻底解决,到底应选择何种合金已迫在眉睫。本文对Sn/Ag、Sn/Ag/Cu和Sn/Cu合金进行研究,比较这些合金的可靠性试验结果和工艺上的一些问题。
无铅替代方案中现在提得较多的是用银或铜代替焊料中的铅,因此我们下面主要对锡与这几种金属组合所形成的合金进行讨论。
Sn/Ag合金
Sn/Ag3.5~4.0在厚膜电路和电子装配中有着悠久的历史,因此业内人士认为用Sn/Ag焊料作为Sn/Pb替代品应该很方便,但是这种材料却有几个问题。首先,该焊料的熔点(221℃)和回流焊峰值温度(240℃~260℃)相对于许多表面安装器件和工艺来说都太高;其次,它里面含有3.5%~4%的银,将会因成本过高而在某些领域受到限制;第三也是最重要的一点,这种焊料因为银相变化而无法通过可靠性试验,这主要是由于合金内不同区域冷却速率不同而造成。
为了深入研究这种焊料,我们将一条Sn96/Ag4锡块进行回流并从底部强制冷却,然后检查它在不同冷却速率下的微观结构。如图1所示,Sn96/Ag4合金由于冷却速率不同而有三种金相结构,这种结构缺陷与焊点上发生的情况很类似,可能引起现场失效。正是由于这个缘故,多数OEM厂商和工业组织都反对采用Sn/Ag作为主要的无铅焊料,银的相变问题还引起人们对含银量高的Sn/Ag/Cu合金的担心。
Sn/Ag/Cu合金
尽管存在专利方面的问题,世界上多数国家还是主张使用Sn/Ag/Cu系列合金,但是应选择什么样的比例呢?本文重点研究其中两种,即一些业界组织关注的Sn/Ag4/Cu0.5以及低含银量对照合金Sn/Ag2.5/Cu0.7/Sb0.5。
在分析这两种合金的可靠性试验结果之前,可以先从经验上对它们做一个比较。总体来讲,它们非常相似,都有很好的疲劳特性、优良的整体焊接强度和丰富的材料供货源,但也有些细微的差别值得进行讨论。
熔点 两种合金的熔点很接近:Sn/Ag4/Cu0.5是218℃,Sn/Ag2.5/Cu0.7/Sb0.5是217℃。虽然熔点对现实应用有无影响还有待商榷,但如果能够严格控制回流焊工艺,熔点温度降低对于减少元件在高温下的停留时间将会有积极影响。
湿润性 在比较这两种合金时,有必要先问一下为什么要选择一种含银量高的合金,因为这会增加成本。一些人认为含银量高的合金有助于提高湿润性,但是湿润试验(图2)表明,含银量低的合金实际上比含银量高的合金湿润性更强。
专利状况 业界希望能找到一种可以广泛使用的合金,所以不会考虑有专利保护的类型。尽管Sn/Ag4/Cu0.5没有专利保护,而Sn/Ag2.5/Cu0.7/Sb0.5已注册了专利,但还是应该用更为慎重的观点来看待专利的影响以及这些合金供应渠道的真实数量。
如上所述,Sn/Ag2.5/Cu0.7/Sb0.5已注册了专利,不过它已被许可转让给了众多焊料制造商且没有数量上的限制,同时无需初始费用。Sn/Ag4/Cu0.5没有注册专利,但用这种焊料的用户应该知道,该合金所形成的焊点却可能申请了专利,美国法律允许销售这种产品的电子级焊料制造商数量是极其有限的。
虽然Sn/Ag4/Cu0.5所形成的焊点可能会违反现有专利,业界还是推荐使用这类合金,因为人们认为这种工艺过去就已经存在,所以不应再受专利的保护。但这是错的,因为多数专利既包括合金组分又包括应用(焊点)。换言之,如果能证明以前就有这样的工艺,那么合金成分可能就不会受专利保护;但是如果专利写得比较详细(包括了应用部分),那么该工艺就必须要面对受到专利保护的焊接过程。从根本上讲,这意味着制造商使用的即使是专利范围之外的合金(如Sn/Ag4/Cu0.5),但如果在制造期间焊料“吸收”了其中某种金属(通常为Cu),形成含有专利保护成分的金属互化物,那么制造商就会因违反专利而可能会引起法律诉讼。
金属成本 高银含量(银的数量在3.5%~7.7%之间)会使合金成本很高,在填充波峰焊机的锡槽时,银含量每上升1%将使每公斤成本增加1.45美元。为减少开支,有人建议在波峰焊中使用不含银的无铅焊料,而将含银合金仅用于表面安装组件。下面会讨论到,这将因Sn/Cu缺陷以及双合金工艺而可能导致产品失效。
Sn/Cu合金
尽管Sn/Cu合金可以节约一部分成本,但它也有几个问题必须要考虑。首先,这种合金的熔点是227℃,因此在许多温度敏感场合其应用会受到限制;其次,各种情况证明,与其它无铅焊料相比这种合金湿润性较差,在很多时候要求使用氮气和活化程度高的助焊剂,并可能引起与湿润有关的问题;第三,Sn/Cu的毛细作用力很低,难于吸入PTH的孔中,同时它缺乏表面安装组件所需要的抗疲劳性;最后,这种合金很差的疲劳特性会引起现场失效,完全抵消因低廉的价格所带来的初期成本节约。
双合金工艺
还应该指出的是,除了Sn/Cu本身的缺点之外,在组装中应用两种焊料合金(如SMT用Sn/Ag/Cu而波峰焊用Sn/Cu)也会产生问题。最好不要将Sn/Ag/Cu和Sn/Cu混杂使用,因为这会引起焊点合金不均匀,出现这种情况后,焊点可能因无法释放应力和应变而容易受疲劳失效的影响。正是由于这种潜在的混杂问题,双合金工艺的修复或修整也需要准备两种合金,并且还要有特别操作说明和监督,才不致于使合金混杂。但遗憾的是不管管理得有多好,操作人员总是喜欢用最容易使用的焊料,即流动性最好并且熔点温度较低的合金,所以许多焊点都可能用Sn/Ag/Cu进行修补,即使这些原先是用Sn/Cu装配。这好比是免洗和RA芯焊锡丝并用的情况,如果它们都放在生产线上,RA经常会被滥用,原因很简单,就是因为它容易用。所以从根本上来讲,双合金组装工艺会引起可靠性问题,且很难进行管理。
焊点可靠性试验
为了分析Sn/Cu和Sn/Ag/Cu合金的可靠性,对它们分别进行热和机械疲劳试验,试验情况如下。
热循环试验 在一块试验板上用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5焊接1206薄膜电阻,然后将试验板在-40℃~+125℃之间分别进行300、400和500次15分钟热冲击试验,完成之后对焊点进行截面分析,检查有无裂缝。
试验后的检验表明,Sn/Cu合金由于湿润性差(图3)而会使焊点出现裂缝,Sn/Cu形状完好的焊点在第三组试验板循环到500次时也出现了裂缝。
有意思的是,Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5(图4)合金在试验到500次时没有出现任何裂缝,这表明Sn/Ag/Cu与Sn/Cu相比具有非常优良的抗热疲劳性。但是从图4也可以明显地看到,Sn/Ag4/Cu0.5合金在热循环后整个焊点的晶状结构确实也出现了一些变化。
机械强度-弯曲试验 用同样的试验板进行弯曲试验,可以看出Sn/Cu0.7(图5)制成的焊点在弯曲试验时出现裂缝,表明焊点不能承受较大的机械应力。相反,Sn/Ag4/Cu0.5和n/Ag2.5/Cu0.7/Sb0.5形成的焊点则全部都通过了弯曲试验要求。
新型方案
为缓解电子业界对无铅焊接的担心,Consultech International公司半导体独立咨询顾问Bance Hom开发了一种全面无铅组装新方案。她采用不光滑的Sn/Pb引脚镀层(QFP 208 IC)、涂有机表面保护剂的PWB和Sn/Ag2.5/Cu0.7/Sb0.5合金焊膏,做出全无铅组装件同时并没有大幅增加复杂性和费用。她成功的关键在于组件的回流焊峰值温度为234℃,应该指出的是,这些组件是在惰性气体下进行加工的。当然,并不是所有组件都能在上述环境下组装,因为元件的来源问题以及不可能在所有组件上都达到234℃峰值温度(由于元件质量、夹具等会引起ΔT不同),但重要的是,在有些情况下应用某些材料还是能很容易地实现无铅焊接。
本文结论
人们对无铅焊料具有很大的热情,主要原因来自于对立法和市场的担心,这也引发了大量的行业组织活动,其中有些对业界很有帮助。

Sn/Cu合金有一些与工艺和可靠性有关的问题,另外在用两种合金装配电路板时也比较困难。如前所述,银是Sn/Ag/Cu合金中最贵的部分,和低银含量合金相比,高银合金在工艺、可靠性及供应方面没有什么明显的优点,因此所有焊接应用中自然会使用成本较低的材料。事实上低银合金解决了高银合金的银相变化问题,具有较好的湿润性和更低的熔点温度,而且低银合金在世界上已有好几家焊料生产商在进行制造,因此JEIDA在日本将其推荐广泛使用。最重要的是,含银量低的Sn/Ag/Cu合金可以给用户提供Sn/Ag/Cu系列合金的优点,不会受成本困扰,可用在所有焊接场合,同时它还解决了Sn/Cu合金和双合金工艺会带来的问题。
芯片级封装器件的焊球贴装

芯片级封装(CSP)已成为面阵列封装设计的主要方式,利用其小巧的面积和格栅阵列技术能够做出更小、更快、更便宜的元器件,用于存储器、电信及多媒体等多种应用中。但CSP技术的出现却给后端工艺带来了新的难题,制造商们必须要仔细考虑工艺流程的参数,才能使做出的产品在成品率和可靠性等方面满足应用的要求。
目前市面上的CSP器件类型数以百计,其中Tessera公司设计的μBGA已逐渐成为市场主流之一,已有多家集成电路制造商和组装厂商获得该项设计的使用许可。μBGA封装结构设计灵活,可避免裸硅片与印制电路板(PWB)间因热膨胀不匹配而带来可靠性问题,其小巧、轻便、薄型封装设计非常适用于便携式产品和其它空间狭小的应用中。
然而使这类设计取得成功的因素对制造来说却是一种挑战。CSP技术的出现给后端工艺带来了新的难题,同时由于终端产品市场固有的成本驱动特性,它还增加了制造商在产量和产能上的压力,这些难题与压力促进了高速高成品率自动化焊球贴装工艺需求的增长。
1999年意大利一家独立的半导体存储器装配和测试机构EEMS在自己的工厂着手开始组装CSP,装配的产品采用Tessera的μBGA封装,组装时对焊球贴装工艺各方面进行了重点考察,包括焊盘形状、基板载带、焊球贴放、助焊剂涂敷以及裸片的运送等。为了解决生产难题,EEMS委托美国Robotic Vision Systems公司的Vanguard事业部安装了一条完整的焊球贴装线,其中包括VAi 6300自动焊球贴放系统、回流焊炉、回流焊后的清洗机和材料运送设备(图1)。
独特的焊盘形状
EEMS的μBGA焊盘形状给焊球贴装带来了很多难题,它的焊盘在基板载带表面下方凹入0.069mm(图2),这样在用标准感光剂丝网进行焊锡助焊剂印刷时,很难控制助焊剂的用量和避免助焊剂桥接。
凹入的焊盘再加上焊盘直径特别小(0.33mm),使得对焊球贴放的准确度要求远远高于标准应用。普通焊盘设计允许贴放位置出现偏差,因为轻微偏离的焊球在焊锡回焊时能自行对中到焊盘上;而对于EEMS封装来说,位置偏移的焊球不会与焊盘或助焊剂接触,它错过了焊盘所在的小“口袋”,因此无法利用焊球、助焊剂和焊盘之间的附着力特性,结果这个焊盘将漏掉焊球,最终产生不完全回流焊而少一个I/O连接。
载带式基板
采用载带设计的引脚框组件(图3)需对焊球贴装工艺有一些独特的考虑。封装排列在载带基板上,载带基板本身又固定在引脚框上,由于基板载带具有柔韧性,因此最好是在载带上安排一些孔以便于机械对位。但在EEMS应用中这却无法做到,所以将孔留在引脚框上是组装定位的唯一可选方法。组装过程中基板载带可能会伸长,使得引脚框和载带基板之间误差产生累积,从而增加了对助焊剂涂敷和焊球贴放工艺精度的要求。由于焊球贴放系统依靠引脚框来进行定位,所以这些工艺必须保持很高的精度以克服因载带弯曲而可能产生的焊盘位置偏移。
除了前面提到的焊盘形状问题之外,由于在引脚框上固定基板载带的安装带位于焊盘表面上方,所以传统的助焊剂丝印方法也有困难,刮刀将与安装带而不是焊盘接触,导致助焊剂用量不均匀。
裸芯片运送
Tessera的μBGA封装采用的是裸芯片,没有用密封剂或模塑保护,如果不仔细运送或固定元件很容易损坏。为了将这种损坏的风险降到最低,材料的运送在焊球贴装线每个阶段都很重要。
集成解决方案
对封装最初的分析表明,需要一个助焊剂涂敷和焊球贴放都有很高精度的高产量解决方案,为了得到可靠的高成品率焊球贴装,整个生产线必须考虑封装对每一步工艺的要求。通过客户和供应商工程力量的共同协作来满足这些要求,研究重点主要是助焊剂涂敷、焊球贴放、定位夹具以及元件运送等几个方面。
助焊剂涂敷
由于安装载带和焊盘形状的原因而无法使用感光剂丝印来涂覆助焊剂,因此这里选用了一种刚性助焊剂漏板(RFS)技术,该技术可以使VAi 6300焊球贴放系统为焊球贴装所需的细间距助焊剂涂敷提供一个更加精确均匀的方法。对于这里的应用来说,RFS主要解决封装位置精确一致、避免助焊剂桥接、助焊剂一致性以及基板上有安装载带时的助焊剂处理能力等几个方面。
RFS用铝合金制造以延长使用寿命,它有一个与封装焊盘形状一样的I/O图案,每个焊盘的孔径和位置都非常精确。该工艺可以使金属漏印板满足助焊剂在位置和数量控制方面的要求,助焊剂涂敷精度可达0.051mm,数量偏差为±5%。
另外在RFS下方还固定有定位销钉用来对引脚框组件定位,这样可以减少定位中的误差累积,确保助焊剂涂敷时每个封装的位置精确一致。Capton安装载带会阻碍丝印助焊剂,此时可在RFS下方做一些释放装置以适用于升高后的载带。
为适应EEMS封装的特殊要求,RFS每个I/O孔周围都加工有“环形”圈,以消除封装中凹陷型焊盘可能存在的助焊剂桥接风险。另外RFS内置的间隙高度可使助焊剂尽可能靠近焊盘表面进行印刷,进一步提高助焊剂数量和涂敷的精度。
焊球放置
与助焊剂涂敷需要很高精度一样的道理,焊球贴放也需要同样的精度。因此,RVSI也将其最新开发的技术配备在焊球贴放系统上,这里是用在钻孔焊球掩膜(DBM)中。和RFS一样,DBM也是由铝合金制成并具有与封装匹配的I/O图形,为焊球的精确贴放提供保证。RFS和DBM都有固定在焊球面对引脚框进行定位的定位销,这样更换工具时无需再作调整,减少转换时间。DBM的刚性很大,所以用真空或空气在吸住松开焊球时它不会弯曲,确保焊球贴放的精确度和重复性达到最高。另外DBM具有平滑的表面,可以避免焊球粘附在掩膜中间,提高成品率和设备运行时间。总的说来,试验表明DBM的焊球贴放精度能达到42μm,可很好地控制在工艺误差范围之内。
定位夹具
由于载带基板具有一定挠性,因此定位夹具准确重复地对每一个封装进行定位至关重要。为了实现准确的助焊剂涂覆和焊球贴放,加工过程中载带表面的共面度应保持在0.051mm范围内。可使用配备专用真空孔(每个裸片对应一个)的硬不锈钢插入板,这些独立的真空孔确保在整个面上支撑引脚框组件,使助焊剂涂敷和焊球贴放操作都在一个平面上进行。可收缩定位销预先将封装组件对准,使引脚框位置一致且重复性高,同时将表面共面度维持在0.051mm范围内,保证了VAi 6300助焊剂涂敷和焊球贴放操作所需的准确度。
元件传输
为了防止封装中极易损坏的裸片受到损伤,在整个焊球贴放系统和材料输送设备中都使用边缘传送带。这种传送带仅与引脚框组件的边缘相接触,不会碰到芯片,但是回流焊炉和清洗机却都是用不锈钢网传送带,可能会导致部件损坏。为了避免这种危险,VAi 180使用一种传输线导引器将引脚框组件从焊球贴放设备移到回流焊炉的传送网上。导引器在五种流程中选择一个,将引脚框组件从VAi 6300送到选中的回流焊炉传送带上,并使传送网的速度与组件移到回流焊炉的速度相同,完成无缝无碰撞传输,避免了传送网与裸芯片之间发生有害碰撞的可能性。
本文结论

2000年5月,焊球贴装线已被整合到生产线中并进入全面生产阶段,转包商可用它来向客户提供当今先进CSP的最新组装产品。EEMS使用的μBGA焊球贴放工艺成品率超过99.9%,虽然该工艺对助焊剂涂敷、焊球贴放、定位夹具和材料输送带来了许多难题,但在客户和供应商之间的共同努力下已经找到了解决的办法,最终得到超出客户期望同时也使制造能力增强的工艺方法。
阻抗测量方法在传感器技术中的应用

实际应用中的电路元件要比理想电阻复杂得多,并且呈现出阻性、容性和感性特性,它们共同决定了阻抗特性。阻抗与电阻的不同主要在于两个方面。首先,阻抗是一种交流(AC)特性;其次,通常在某个特定频率下定义阻抗。如果在不同的频率条件下测量阻抗,会得到不同的阻抗值。通过测量多个频率下的阻抗,才能获取有价值的元件数据。这就是阻抗频谱法(IS)的基础,也是为许多工业、仪器仪表和汽车传感器应用打下基础的基本概念。
电子元件的阻抗可由电阻、电容或电感组成,更一般的情况是三者的组合。可以采用虚阻抗来建立这种模型。电感器具有的阻抗为jωL,电容器具有的阻抗为1/jωC,其中j是虚数单位,ω是信号的角频率。采用复数运算将这些阻抗分量组合起来。阻抗的虚数部分称为电抗,总表达式为Z=R+jX,其中X为电抗,Z表示阻抗。当信号的频率上升时,容抗Xc降低,而感抗XL升高,从而引起总阻抗的变化,阻抗与频率呈函数关系。纯电阻的阻抗不随频率变化。。


1:电阻器和电容器并联时的奈奎斯曲线。

如何分析阻抗
为了检测元件的阻抗,在以不同的频率对器件进行扫描时,通常需要测量时域或频域的响应信号。测量频域响应信号一般采用模拟信号分析方法,例如交流耦合电桥,但是采用高性能模数转换器(ADC),允许在时域采集数据,然后再转换到频域
许多积分变换都可以用于将数据转换到频域,如傅里叶分析。这种方法就是取出信号的一系列时域信号表示,然后应用积分变换将其映射为频谱。采用这种方法可以给出任意两种信号之间关系的数学描述。在阻抗分析中感兴趣的是激励电流(元件的输入)和电压响应(元件的输出)之间的关系。如果系统是线性的,测得的时域电压和电流的各自傅里叶变换的比值就等于其阻抗,并且它可以表示成一个复数。这个复数的实数部分和虚数部分构成随后数据分析的关键部分。

其中,E=系统电压;I=系统电流;t=时域参数
?=傅里叶变换
将复数形式转换成极坐标形式便可以得到在特定频率下响应信号的幅度和相位与激励信号的关系。


其中R和X分别表示复数的实部和虚部。上面计算得到的幅度表示该元件在特定频率条件下的复数阻抗。在扫频的情况下,可以计算出每个频率点对应的复数阻抗。
阻抗数据分析
常用的方法是将产生的阻抗与频率的关系曲线作为数据分析的一部分。当频率在给定的范围内扫频时,奈奎斯特(Nyquist)图是在复数平面内以传递函数的实部和虚部为参数的曲线。如果图中的x轴表示实部,y轴表示虚部(注意:y轴取负数),就可以得到每个频率点的阻抗表示。换句话说就是,曲线上的每个点都代表了某个频率点的阻抗。可以从向量长度|Z|和该向量与x轴之间的夹角?计算出阻抗。图1为电阻器和电容器并联时的典型奈奎斯曲线。
尽管奈奎斯曲线很常用,但是它不能给出频率信息,所以对于任何特定阻抗,都不可能知道采用的频率值是多少。因此,奈奎斯曲线通常要采用其它曲线来补充。另外一种常用的表示方法就是波特(Bode)图。在波特图中,x轴表示频率的对数,阻抗的幅度绝对值|Z|和相移都用y轴表示。因此波特图同时表示了阻抗与频率和相移与频率的关系。通常将奈奎斯曲线和波特图一起使用来分析传感器元件的传递函数。
基于阻抗特性的传感器
考虑一个基于阻抗特性的传感器,在正常条件下其电容、电感和电阻特性的组合会产生一个特定的阻抗信号。如果传感器周围环境的变化引起上述特性的任何变化,都会造成阻抗的改变。通过测量这种阻抗传感器随频率变化的特性,将会得到一系列新的阻抗特性。
一种相当简单的方法就是将阻抗的测量值和预测值比较以便得出某种结论。这种工作原理的一个实例就是一种采用涡流原理的金属检测传感器。在位于传感器外壳的线圈中产生一个高频交流信号。该线圈产生的电磁场在导电靶中感应出涡流。反过来这个涡流与该传感器线圈相互作用,所以改变了其阻抗。


2:表示阻抗与频率和相角与频率之间关系的波特图。

测量随频率变化的线圈阻抗具有许多好处。因为材料的渗透率会影响线圈的阻抗,所以利用经验阻抗特性可得出一些有关金属类型的结论。采用这种方法还可以允许该阻抗特性传感器检测具有不同渗透率的金属。渗透率变化还可以用于测量金属压力,因为压力变化会改变渗透率,而渗透率的变化又会改变阻抗。波特图和奈奎斯曲线在检查传感器的频率响应方面是很有用的。测量大量频率点的阻抗比测量单个频率点的阻抗得到的结果更为精确,因为这有助于去除噪声。还可以通过在某些特定条件下测量电容分量和电感分量的频率响应确定最佳的工作频率点。
将阻抗的测量值和其理想值相比较的方法可适用于许多基于阻抗特性能引起电阻、电容或电感变化原理的传感器技术。常见的应用范围包括从采用化学传感器的气体检测、基于电容特性的湿度传感器、游戏或食品业中的金属硬币或颗粒特征识别,到农业中的土壤监测。
阻抗分析不仅仅包含简单地将阻抗响应特性与其理想特性相比较。阻抗频谱法(IS)通常用于表征系统以及获取有关系统的有价值信息。本文的目的是将系统从总体上定义为一个元件或者与电极有电接触的材料。这种接触可以是固体与固体(在许多化学传感器的情况下)或者固体与液体(当测量液体中某种成分的浓度时)之间的界面。采用IS可以得到有关元件本身和元件与电极之间界面的信息。
IS的原理利用这样的事实:如果给界面施加很小的电位,它就会极化。界面极化的方式与当施加电位反转时极化改变的速度相结合,可以表征界面的特性。对于系统界面,例如吸附和反应速率常数、扩散系数和电容等信息都可以得到。对于元件本身,有关其介电常数、电导率、电荷均衡迁移率、各成分浓度以及大量生成率和复合率等信息都可以估计出来。
系统或元件的等效电路模型是分析阻抗扫描所产生数据的基础。这种模型通常是所连接的电阻器、电容器和电感器的组合,以便模拟该系统的电特性。我们要找的模型要求在不同频率下其阻抗要与测得的阻抗特性相匹配。在理想情况下,模型的元件和互连方式的选择要用来表示特定的电化学特性,而且要符合该过程的物理特性。可以采用文献中已有的模型,也可以根据经验建立一种新模型。
在根据经验建立模型的情况下,要在经验模型和测量数据之间找到最佳匹配。因为模型中的元件不一定总是符合电化学工艺的物理特性,所以可以单独构建模型以便得到最佳匹配。通过逐步增大或减小元件的阻抗直至得到最佳匹配,便可以建立起经验模型。通常根据非线性最小二乘法拟合(NLLS)原理来完成建模。借助于计算机,利用NLLS算法先初步估计模型参数,然后逐步改变每个模型参数,并评估产生的拟合结果。采用软件迭代处理直至找到可以接受的最佳拟合结果。


3. 用于腐蚀分析的常用等效电路

数据分析和等效电路模型都应当非常小心的对待,而且要进行尽可能多的模型验证。虽然通过增加元件几乎总可以建立一个非常合适的模型,但是这样并不能认为它就代表了系统的电化学工艺。一般说来,经验模型应该采用尽可能少的元件,而且应当尽可能采用基于系统电化学工艺理论基础的物理模型。
另外,通常可以建立具有相同阻抗特性的许多不同的经验模型。虽然可能得到一个很好的最小二乘法匹配模型,但仍然有可能得到不能代表该物理系统的不恰当模型。还有可能NLLS拟合算法对测量特性有部分遗漏或者没有收敛。这是因为很多算法都试图在整个频谱范围内优化拟合曲线,所以有可能漏掉了频谱中某些特定频率点上不好的拟合数据。
腐蚀分析是采用IS法表征系统特性的常见应用,也是一个很好的实例。金属的腐蚀(例如铝和钢)是许多行业中的重大安全考虑因素。如果不重视的话,它会导致金属寿命过早结束。自动监视腐蚀的能力能显著节省成本,具有安全和可靠性优势,而且有助于最佳化预防性地维护系统。
除了确定腐蚀的程度,通过监测腐蚀的速率还有可能预测金属疲劳。产生金属疲劳后,在小裂缝出现的地方会从有弹性变为没有弹性。这些裂缝是新的,但是腐蚀速率相当地快,而且裂纹扩展的速率以及随后的腐蚀代表了金属疲劳的程度。早期鉴定腐蚀的方法,特别是在很难达到且无法看到的位置,可以防止或者减慢严重腐蚀的破坏。它还可以用于帮助在现实条件下鉴定不同的保护涂层。
下面是根据物理学知识和腐蚀期间发生的电化学工艺过程建立的一种腐蚀过程等效电路模型。常用于腐蚀监视的等效电路用一个电阻器(Rp)和电容器(Cp)相并联再与一个电阻器Rs相串联表示。
在模型A中电阻器Rs表示金属所在的溶液,而电容Cc表示金属表面的保护涂层或涂料,这表示初始涂层的电容。经过一段时间后,水渗入涂层中形成新的液体和金属界面。随着金属的腐蚀,通过溶液与金属之间的保护涂层形成离子导电路径。这可以用Rx与Cc并联模型来表示。另外,有些模型(模型B)还有一个附加的R和C并联起来再与Rx串联的电路来表示金属保护涂层随着时间变化的分层模型。
金属所在的溶液的电阻率或电导率通常是已知的或者很容易获得,所以可以得到Rs。还可以得到Cp的值,因为可以由保护涂层的介电常数(通常由厂商提供)及其覆盖的面积计算得到。然后就是求解RX以便确定腐蚀的程度。通常通过曲线拟合算法得到测量阻抗特性数据的最佳拟合来解决这个问题。波特图也是很常用的方法,它根据其阻抗频率响应和相位频率响应来检测腐蚀传感器的特性。
IS法不仅仅限于腐蚀分析,还可以用于表征多种电化学系统。例如,它可以用于优化燃料电池性能,预测电池健康状况,检查液体中某种成分的浓度以便确定其质量,还可以表征某种材料的电化学性能。
优化电路设计
等效电路模型一旦确定,就必须设计电子数据采集系统来完成频率扫描和获取数据。这通常是一项既复杂又费时的工作,需要不可或缺的电子学知识以便优化电路设计。
设计的电路必须能在有用的范围内以要求的分辨率产生频率扫描。在许多电化学系统中必须避免采集到的数据受到电化学工艺本身的干扰。所以通常采用小的AC信号,并且还很重要的一点就是不能在系统中引入DC电位差,因为它会导致进一步的电化学反应。然后必须用ADC采集系统对激励频率的响应。在有些设计中需要两个ADC分别用于捕获激励信号和响应信号。这是很复杂的,因为需要两个ADC同步采样以便检测出信号之间的相位变化。
AD5933就是一种典型的集成电路芯片,它提供可编程频率扫描发生器和集成的ADC,该ADC可以与激励频率一起工作来获取响应信号。另外,整个系统必须保持线性。换句话说就是系统的总带宽必须足够而且信号大小也要足够才能得到好的测量结果,但是信号又不能太大以至于超过ADC或其它元件的量程而引起失真。因为待测元件阻抗范围通常未知,所以通常最开始需要做一些反复试验来优化系统并且确保它的线性特性。将响应信号转换为数字形式后,通常将数字信号送入计算机进行下一步的分析。

最新的解决方案,例如AD5933,在送给计算机进行处理之前提取了响应信号的实部和虚部,在芯片内完成了大量的分析。这样大大减轻了计算机的运算负担,并且提高了数据采集的质量,因为模拟信号处理电路经过优化与其它的功能模块配合工作。应当特别注意的是,在使整个系统保持线性的同时,模拟信号的测量结果要经过验证,否则尽管计算机能轻易提供4位或高于4位的精度,最终结果还是会有偏差。精心的系统设计和验证以获得有效的测量是提高最终结果精度的关键。
 
 

上海木信电子科技有限公司  版权所有

地址:上海市康桥路1100号(保康大厦)号1104  邮编:201315
电话:021-61999816传真:021-51062086  手机:13564427875